Correction des exercices d'Electricité - Physique

1. Un courant de 2 A entraîne un passage de 2 Coulombs par seconde. C'est la définition de l'ampère.

$$q=2C$$

Nombre e- = q/Charge Unitaire = $2/1,602.10^{-19} = 1,25.10^{19}$ e-

On prend la valeur positive de la charge unitaire dans la mesure où l'on calcule un nombre d'électrons.

2. La charge doit être calculée (q)

$$q = \frac{W}{U} = \frac{200}{220} = 0.91C$$

Cette charge est fournie sur 2 secondes

$$i = \frac{q}{t} = \frac{0.91}{2} = 0.455A$$

Nbree-=
$$\frac{q}{1,602.10^{-19}}$$
= $\frac{0.91}{1,602.10^{-19}}$ =5,68.10¹⁸e-

3. On cherche W, le travail :

q= 1,8 C car l'intensité est de 1,8 A

$$W=U.q = 230.1,8 = 414 J$$

4. On cherche la résistance du circuit, on utilise la loi d'Ohm.

U = R.I

$$R = \frac{U}{i} = \frac{2.5}{0.047} = 53.2\Omega$$

5. Pour les montages, voir cours...

Circuit en série:

$$R_{ea} = R1 + R2 = 100 + 250 = 350\Omega$$

Circuit en parallèle:

$$\frac{1}{R_{eq}} = \frac{1}{R1} + \frac{1}{R2} = \frac{1}{100} + \frac{1}{250} = 0,014$$

Réq = 71,43
$$\Omega$$

On peut continuer à utiliser la loi d'Ohm pour calculer l'intensité :

Circuit en série:

$$i = \frac{U}{R} = \frac{220}{350} = 0,63A$$

Circuit en parallèle:

$$i = \frac{U}{R} = \frac{220}{71.43} = 3.1A$$

L'intensité dans les dérivations en cas de circuit parallèle :

$$i1 = \frac{U}{R} = \frac{220}{100} = 2.2A$$

$$i2 = \frac{U}{R} = \frac{220}{250} = 0,88A$$

Ces deux derniers résultats confirment la loi des noeuds dans la mesure où la somme de i1 et i2 représente l'intensité globale calculée plus haut soit 3,1 A.

6. Pour les montages, voir cours...

Si le circuit est en série, Réq = 250 + 150 = 400 Ω

Si le circuit est en parallèle, Réq = 93,7 Ω (somme des inverses donnant l'inverse de la résistante équivalente)

Pour calculer la consommation, il nous faut connaître la puissance d'un circuit.

La formule à utiliser est : P = R.i²

Pour le circuit en série :

Il faut connaître i or U vaut 220 V et R vaut 400
$$\Omega$$
 donc $i = \frac{U}{R} = \frac{220}{400} = 0,55A$

Donc P = 400.0,55² = 121 W (les unités de la puissance sont les Watts, souvenez-vous)

Pour le circuit en parallèle :

$$i = \frac{U}{R} = \frac{220}{93.7} = 2.34A$$

Donc P = $93,7.2,34^2 = 516,5 \text{ W}$

On voit que les puissances développées sont par contre très différentes.

Comment calculer une consommation et son coût?

Exemple de calcul de la consommation d'un radio-réveil

Un radio-réveil est toujours allumé et consomme donc de l'énergie en permanence.

heures / jour	24 heures
jours / an	365
Puissance radio-réveil	10 watts

Consommation électrique annuelle d'un radio-réveil: 24 x 365 x (10 watts / 1000) =

87,6 kWh

Sachant que le kWh coûte environ 9 eurocents, vous pouvez calculer une consommation sur un temps déterminé. Diviser la puissance par 1000 permet d'exprimer celle-ci en kWh, unité utilisée pour calculer le coût de consommation.

Coût : 87,6 kWh * 0,09 € = 7,88 € par an.

Circuit en série :

Consommation en 1h30 : 0,121 kWh * 1,5 = 0,181 kWh

Coût: 0,181 * 0,09 = 0,016 €

En 15 minutes : 0,121 kWh/4 = 0,030 kWh

Coût: 0,030 * 0,09 = 0,0027 €

Circuit en parallèle :

Consommation en 1h30 : 0,516 kWh * 1,5 = 0,774 kWh

Coût: 0,516 * 0,09 = 0,07 €

En 15 minutes : 0.516/4 = 0.129 kWh

Coût : 0,129* 0,09 = 0,011 €